EXERCICE 5.1

Calculer les quatre expressions pour chaque valeur de a, b et c comme dans l'exemple :

а	b	с	a + b + c	a + b – c	a – b + c	a – b – c
1	-2	3	1 - 2 + 3 = 4	1 - 2 - 3 = -4	1 + 2 + 3 = 6	1 + 2 - 3 = 0
4	-5	6				
-3	2	-1				
6	-2	-7				
-6	-1	-3				

EXERCICE 5.2

On donne l'expression littérale :

A = x + 7.

a. Calculer les différentes valeurs de l'expression A auand x vaut : 5 ; -3 ; -4 et -7.

quunu x vuuci 5	
Si x = 5,	Si x = -3,
Alors $A = x + 7$	Alors $A = x + 7$
A =	A =
Si x = -4,	Si x = -7,
Si $x = -4$, Alors $A = x + 7$	Si x = -7, Alors A = x + 7
Alors $A = x + 7$	Alors $A = x + 7$
Alors $A = x + 7$	Alors $A = x + 7$
Alors $A = x + 7$	Alors $A = x + 7$

b. Parmi les quatre valeurs de x proposées, laquelle est solution de l'équation :

x + 7= 0 ?

EXERCICE 5.3

On donne l'expression littérale : B = 8 + x. a. Calculer les différentes valeurs de l'expression A quand x vaut : 11 : -9 : -7 et -11.

quana x vaaci 11/	<i>y</i> / <i>i i i i</i>
Si x = 11,	Si x = -9,
Alors B = 8 + x	Alors B = 8 + x
B =	B =
Si x = -7,	Si x = -11,
Alors B = 8 + x	Alors B = 8 + x
B =	B =
b. Parmi les quatre va	aleurs de x proposées,

lesquelles sont solutions de l'inéquation :

8 + x < 0 ?

EXERCICE 5.4

On donne l'expression littérale : C = 13 - x. a. Calculer les différentes valeurs de l'expression A quand x vaut : 11 ; -9 ; 19 et -11. b. Parmi les quatre valeurs de x proposées,

b. Parmi les quatre valeurs de x proposées, lesquelles sont solutions de l'inéquation : $13 - x \ge -2$?

EXERCICE 5.5

On donne l'expression littérale :

$$D = -x - 31.$$

a. Calculer les différentes valeurs de l'expression A quand x vaut : 6 ; -13 ; -9 et -6.

b. Parmi les quatre valeurs de x proposées, lesquelles sont solutions de l'inéquation :		

-x - 31 > -2 ?

Mathsenligne.net

OPERATIONS SUR LES NOMBRES RELATIFS

EXERCICE 5

CORRIGE – M. QUET

EXERCICE 1

а	b	с	a + b + c	$\mathbf{a} + \mathbf{b} - \mathbf{c}$	a – b + c	$\mathbf{a} - \mathbf{b} - \mathbf{c}$
1	-2	3	1 + (-2) + 3 = 2	1 + (-2) - 3 = -4	1 - (-2) + 3 = 6	1 - (-2) - 3 = 0
4	-5	6	4 + (-5) + 6 = 5	4 + (-5) - 6 = -7	4 - (-5) + 6 = 15	4 - (-5) - 6 = 3
-3	2	-1	-3+2+(-1)=-2	-3+2-(-1)=0	-3-2+(-1)=-6	-3-2-(-1)=-4
6	-2	-7	6 + (-2) + (-7) = -3	6 + (-2) - (-7) = 11	6 - (-2) + (-7) = 1	6 - (-2) - (-7) = 15
-6	-1	-3	-6 + (-1) + (-3) = -10	-6 + (-1) - (-3) = -4	-6 - (-1) + (-3) = -8	-6 - (-1) - (-3) = -2

EXERCICE 2: $A = x + 7$	1
Si $x = 5$	Si $x = -3$
Alors $A = x + 7$	Alors $A = x + 7$
A = 5 + 7	A = -3 + 7
A = 12	A = 4
Si $x = -4$	Si $x = -7$
Alors $A = x + 7$	Alors $A = x + 7$
A = -4 + 7	A = -7 + 7
$\mathbf{A} = 3$	$\mathbf{A} = 0$

Donc
$$x + 7 = 0$$
 pour $x = -7$

EXERCICE 3: $B = 8 + x$		
Si $x = 11$	Si $x = -9$	
Alors $\mathbf{B} = 8 + x$	Alors $\mathbf{B} = 8 + \mathbf{x}$	
B = 8 + 11	$\mathbf{B} = 8 + (-9)$	
B = 19	$\mathbf{B} = -1$	
Si $x = -7$	Si $x = -11$	
Alors $\mathbf{B} = 8 + x$	Alors $\mathbf{B} = 8 + \mathbf{x}$	
$\mathbf{B} = 8 + (-7)$	B = 8 + (-11)	
B = 1	$\mathbf{B} = -3$	
Donc $x = -9$ et $x = -11$ vérifient $8 + x < 0$		

EXERCICE 4: $C = 13 - x$		
Si $x = 11$	Si $x = -9$	
Alors $C = 13 - x$	Alors $C = 13 - x$	
C = 13 - 11	C = 13 - (-9)	
$\mathbf{C} = 2$	$\mathbf{C} = 22$	
Si $x = 19$	Si $x = -11$	
Alors $C = 13 - x$	Alors $C = 13 - x$	
C = 13 - 19	C = 13 - (-11)	
$\mathbf{C} = -6$	$\mathbf{C} = 24$	
Donc $13 - x \ge -2$ pour $x = 11, x = -9, x = -11$		

EXERCICE 5 : D = -x - 31

Si $x = 6$	Si $x = -13$
Alors $D = -x - 31$	Alors $D = -x - 31$
D = -6 - 31	D = -(-13) - 31
$\mathbf{D} = -37$	$\mathbf{D} = -18$
Si $x = -9$	Si $x = -6$
Alors $D = -x - 31$	Alors $D = -x - 31$
D = -(-9) - 31	D = -(-6) - 31
D = -22	D = -25

Donc aucune de ces valeurs n'est solution de l'inéquation -x - 31 > -2